廣東珠海一體化污水處理設備
傳統A2O工藝屬于單泥系統,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生長于同一系統中,而各類微生物實現其功能大化所需的泥齡不同:
1)自養硝化菌與普通異養好氧菌和反硝化菌相比,硝化菌的世代周期較長,欲使其成為優勢菌群,需控制系統在長泥齡狀態下運行。冬季系統具有良好硝化效果時的污泥齡(SRT)需控制在30d以上;即使夏季,若SRT<5d,系統的硝化效果將顯得極其微弱。
2)PAOs屬短世代周期微生物,甚至其大世代周期(Gmax)都小于硝化菌的小世代周期(Gmin)。
從生物除磷角度分析富磷污泥的排放是實現系統磷減量化的一渠道。
若排泥不及時,一方面會因PAOs的內源呼吸使胞內糖原消耗殆盡,進而影響厭氧區乙酸鹽的吸收及聚-β-羥基烷酸(PHAs)的貯存,系統除磷率下降,嚴重時甚至造成富磷污泥磷的二次釋放;另一方面,SRT也影響到系統內PAOs和聚糖菌(GAOs)的優勢生長。
在30℃的長泥齡(SRT≈10d)厭氧環境中,GAOs對乙酸鹽的吸收速率高于PAOs,使其在系統中占主導地位,影響PAOs釋磷行為的充分發揮。
2、碳源競爭及硝酸鹽和DO殘余干擾
在傳統A2/O脫氮除磷系統中,碳源主要消耗于釋磷、反硝化和異養菌的正常代謝等方面,其中釋磷和反硝化速率與進水碳源中易降解部分的含量有很大關系。一般而言,要同時完成脫氮和除磷兩個過程,進水的碳氮比(BOD5/ρ(TN))>4~5,碳磷比(BOD5/ρ(TP))>20~30。
當碳源含量低于此時,因前端厭氧區PAOs吸收進水中揮發性脂肪酸(VFAs)及醇類等易降解發酵產物完成其細胞內PHAs的合成,使得后續缺氧區沒有足夠的優質碳源而抑制反硝化潛力的充分發揮,降低了系統對TN的脫除效率。
反硝化菌以內碳源和甲醇或VFAs類為碳源時的反硝化速率分別為17~48、120~900mg/(g·d)。因反硝化不*而殘余的硝酸鹽隨外回流污泥進入厭氧區,反硝化菌將優先于PAOs利用環境中的有機物進行反硝化脫氮,干擾厭氧釋磷的正常進行,終影響系統對磷的高效去除。
一般,當厭氧區的NO3-N的質量濃度>1.0mg/L時,會對PAOs釋磷產生抑制,當其達到3~4mg/L時,PAOs的釋磷行為幾乎*被抑制,釋磷(PO43--P)速率降至2.4mg/(g·d)。
按照回流位置的不同,溶解氧(DO)殘余干擾主要包括:
1)從分子態氧(O2)和硝酸鹽(NO3-N)作為電子受體的氧化產能數據分析,以O2作為電子受體的產能約為NO3-N的1.5倍,因此當系統中同時存在O2和NO3-N時,反硝化菌及普通異養菌將優先以O2為電子受體進行產能代謝。
2)氧的存在破壞了PAOs釋磷所需的“厭氧壓抑”環境,致使厭氧菌以O2為終電子受體而抑制其發酵產酸作用,妨礙磷的正常釋放,同時也將導致好氧異養菌與PAOs進行碳源競爭。
一般厭氧區的DO的質量濃度應嚴格控制在0.2mg/L以下。從某種意義上來說硝酸鹽及DO殘余干擾釋磷或反硝化過程歸根還是功能菌對碳源的競爭問題。
廣東珠海一體化污水處理設備A/O內循環生物脫氮工藝特點
根據以上對生物脫氮基本流程的敘述,結合多年的廢水脫氮的經驗,我們總結出(A/O)生物脫氮流程具有以下優點:
(1)效率高。
該工藝對廢水中的有機物,氨氮等均有較高的去除效果。當總停留時間大于54h,經生物脫氮后的出水再經過混凝沉淀,可將COD值降至100mg/L以下,其他指標也達到排放標準,總氮去除率在70%以上。
(2)流程簡單,投資省,操作費用低。
反硝化在前,硝化在后,設內循環,以原污水中的有機底物作為碳源,效果好,反硝化反應充分;曝氣池在后,使反硝化殘留物得以進一步去除,提高了處理水水質;A段攪拌,只起使污泥懸浮,而避免DO的增加。O段的前段采用強曝氣,后段減少氣量,使內循環液的DO含量降低,以保證A段的缺氧狀態。
該工藝是以廢水中的有機物作為反硝化的碳源,故不需要再另加甲醇等昂貴的碳源。尤其,在蒸氨塔設置有脫固定氨的裝置后,碳氮比有所提高,在反硝化過程中產生的堿度相應地降低了硝化過程需要的堿耗。
(3)缺氧反硝化過程對污染物具有較高的降解效率。
如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有機物的去除率分別為62%和36%,故反硝化反應是為經濟的節能型降解過程。