涂建國
一、產品簡介
為了滿足大容量、高電壓(超高電壓)電氣設備試驗需要,武漢華頂電力設備有限公司專門設計生產HDTP-50HZ工頻調感串聯諧振耐壓試驗裝置,本升壓裝置采用串聯諧振原理,用可調電抗器與被試設備(容性)的電容或補償電容相匹配,形成諧振。這樣試驗電源只承擔有功分量,僅為被試所需容量的1/Q倍,試驗設備的容量和重量都大大減小。是較為理想的高電壓源。
二、主要特點
1.反擊過電壓和傳遞過電壓保護:本裝置以妥善的接線方式、完善的保 護環節和能量的逐級吸收,防止反擊過電壓和傳遞過電壓的侵害。經過多年的現場實踐證明,試品在閃絡或擊穿時,可避免成套試驗裝置和在場試驗人員不受過電壓的侵害和威脅。同時也可避免被試品的故障點在閃絡或擊穿后不擴大損傷。
2.體積小,重量輕,安裝、搬運方便,接線簡單,非常適合現場使用人員的操作。
3.調感諧振裝置的主要功能有:
(1)電抗器鐵芯間隙遙測功能:
本裝置在電抗器上安裝了間隙傳感器,在控制臺上可直接讀出鐵芯的間隙,以指導操作,另外還安裝了間隙限位開關及指示。
(2)耐壓時間到自動降壓功能:
耐壓計時采用數顯計時器。且當到達耐壓時間時,系統會自動降壓
(3)零位合閘、零起升壓功能:
具有零位限位功能,如果調壓器不在零位,高壓輸出按鈕無法合上,保證系統是從零起升壓。
(4)過流保護功能:
系統裝有電磁式過流繼電器,此繼電器抗干擾能力強,動作迅速,避免試品不受過流的損傷。
(5)過壓及被試品閃絡保護功能:
本裝置裝用電子式過壓閃絡保護板,避免試品不受過壓和閃絡的侵害,且動作迅速。
(6)各試驗數據實時監測功能:
可以對高壓側電壓電流和低壓側的電壓電流進行監測,可以更直觀地了解試驗情況。
三、主要技術指標
1.勵磁變壓器HDLB-80kVA/4/5/6kV 1臺
A:額定容量:80kVA;
B: 輸入電壓:400V,單相;
C:輸出電壓:4/5/6kV
D:結 構:干式;
2.操作臺HDCT-80kVA/380V 1臺
A:額定容量:80kVA;
B:輸入電壓:380V;
C: 輸出電壓:0~400V;
D: 保護功能:零位、過流、過壓及試品閃絡保護;;
3.可調電抗器 HDTB-k-200kVA/50kV 1臺
A:額定容量:200kVA
B:額定電壓:50kV;
C: 額定電流:4A;
D: 電感量:25~100H
E: 品質因數:Q≥40;
F: 結 構:干式可調;
3.固定電抗器 HDTB-G-200kVA/50kV 3臺
A: 額定容量:200kVA
B: 額定電壓:50kV;
C: 額定電流:4A;
D: 電感量:25H*2臺/35H*1臺
E: 品質因數:Q≥40;
F: 結 構:干式可調;
4.電容分壓器HDFCR-50kV 1臺
A:額定電壓:50kV;
B: 測量精度:交流有效值1.5級;
C: 介質損耗:tgσ≤0.5%;
D: 分 壓 比:1000:1,分壓比誤差:≤1.0%;
更多詳情請關注武漢華頂電力設備有限公司
- 場測試環境應準備相應的防護和工作器具,如在電纜隧道內工作應確認隧道內是否存在有毒易燃氣體并采取相應手段予以排除。
- 對于在電纜互層交叉互聯接地線和直接接地線上進行的測試工作應使用合適的工具打開接地箱,在開啟過程中嚴禁接觸裸母排等導體,傳感器的卡裝等操作應佩戴10kV電壓等級絕緣手套。
- 對于電纜終端下方的測試應保證所有操作處于電氣安全距離范圍內。其他電力設備
對于其他電力設備,如旋轉電機、開關設備以及變壓器等,利用高頻電流互感器進行局部放電檢測方法與電纜類似,都是在連接設備電纜本體或接地線上進行測量,圖5-7是幾種利用HFCT進行帶電或在線監測時的檢測示意圖。對于這些設備,在進行局部放電測試前,同樣需要對局部放電檢測系統進行校驗,以確保檢測設備的正常運行。由于開關柜、旋轉電機等正常運行時電壓均較高,在進行傳感器安裝、設備調試過程中務必佩戴相應等級的絕緣手套以及在一定的電氣安全距離內操作,確保人生安全。
圖5-7 帶接地引下線設備高頻局部放電檢測原理圖診斷方法
對于不同電力設備,高頻局部放電檢測的診斷方法基本*,主要包括兩大部分:噪聲抑制及放電信號區分、局部放電源的準確定位。
- 噪聲抑制、干擾排除及局放缺陷診斷
對不同電力設備進行高頻局部放電檢測時,高頻傳感器耦合出來的信號并非單純的放電信號,而是混合著電磁干擾噪聲,如何將干擾噪聲去除是局部放電帶電檢測過程中較為困難和關鍵的問題之一。
按照時域波形特征,外部背景噪聲主要包括周期型干擾信號、脈沖型干擾信號和白噪聲干擾信號。針對不同干擾信號的特征和性質,需采用不同的抑制措施。在已有的各種系統中,干擾信號抑制主要包括硬件和軟件兩個方面的措施。雖然硬件抑制方法有一定的效果,但是現場干擾會隨著環境、設備負載以及運行方式的改變而改變,硬件抑制方法難以達到理想的效果。
隨著數字信號處理技術的發展,高頻局部放電檢測中的干擾抑制措施主要依靠軟件實現。目前常用的數字化抗干擾方法主要有:脈沖平均法、數字濾波法、信號相關法、神經網絡法以及小波分析法。小波變換是基于非平穩信號的分析手段,在時域、頻域同時具有良好的局部化平頂山工頻調感串聯諧振耐壓試驗裝置選型性質,非常適合于不規則、瞬變信號的處理,越來越多的用于高頻局部放電檢測的干擾抑制措施中。
對于放電信號的區分,一方面可利用前述的抗干擾技術,將外界干擾噪聲抑制到較小水平,另一方面也可通過與不同缺陷放電特征數據庫進行對比,即進行放電信號的模式識別。模式識別的主要步驟包括放電信號的測量、放電信號特征提取與分類和特征指紋庫比對三個步驟,從而判斷所測信號是否為真實的放電信號以及是何種放電。一種模式識別方法是利用相位統計譜圖的形狀特點,通過計算統計譜圖的偏斜度、陡峭度以及相互關聯因素等特征參數,從而對缺陷類型進行確認和識別。另外一種是聚類分析法,該方法主要將放電信號按其各自的等效頻率、等效時長或其它與波形相關的特征參量進行分類,形成時頻域映射譜圖。時頻譜圖的特點是多個放電源、不同放電類型的局部放電脈沖會被映射到不同聚點,這樣便于在局部放電相位譜圖上將真實放電和噪聲干擾區分開來如圖5-8所示。還有平頂山工頻調感串聯諧振耐壓試驗裝置選型一種聚類原理是利用三相同步局部放電檢測技術,對耦合到的信號進行幅度、相位或頻率的計算,從而進行分類,如圖5-9所示。
圖5-8 局部放電時頻映射譜圖[16] 圖5-9 三相局部放電同步檢測聚類譜圖[28]