光學顯微鏡是利用光學原理,把人眼所不能分辨的微小物體放大成像,以供人們提取微細結構信息的光學儀器。
早在公元前一世紀,人們就已發(fā)現(xiàn)通過球形透明物體去觀察微小物體時,可以使其放大成像。后來逐漸對球形玻璃表面能使物體放大成像的規(guī)律有了認識。
1590年,荷蘭和意大利的眼鏡制造者已經(jīng)造出類似顯微鏡的放大儀器。1610年前后,意大利的伽利略和德國的開普勒在研究望遠鏡的同時,改變物鏡和目鏡之間的距離,得出合理的顯微鏡光路結構,當時的光學工匠遂紛紛從事顯微鏡的制造、推廣和改進。
17世紀中葉,英國的羅伯特.胡克和荷蘭的列文.虎克,都對顯微鏡的發(fā)展作出了的貢獻。1665年前后,胡克在顯微鏡中加入粗動和微動調焦機構、照明系統(tǒng)和承載標本片的工作臺。這些部件經(jīng)過不斷改進,成為現(xiàn)代顯微鏡的基本組成部分。
1673~1677年期間,列文胡克制成單組元放大鏡式的高倍顯微鏡,其中九臺保存至今。胡克和列文胡克利用自制的顯微鏡,在動、植物機體微觀結構的研究方面取得了杰出的成就。
19世紀,高質量消色差浸液物鏡的出現(xiàn),使顯微鏡觀察微細結構的能力大為提高。1827年阿米奇*個采用了浸液物鏡。19世紀70年代,德國人阿貝奠定了顯微鏡成像的古典理論基礎。這些都促進了顯微鏡制造和顯微觀察技術的迅速發(fā)展,并為19世紀后半葉包括科赫、巴斯德等在內(nèi)的生物學家和醫(yī)學家發(fā)現(xiàn)細菌和微生物提供了有力的工具。
在顯微鏡本身結構發(fā)展的同時,顯微觀察技術也在不斷創(chuàng)新:1850年出現(xiàn)了偏光顯微術;1893年出現(xiàn)了干涉顯微術;1935年荷蘭物理學家澤爾尼克創(chuàng)造了相襯顯微術,他為此在1953年獲得了諾貝爾物理學獎。
古典的只是光學元件和精密機械元件的組合,它以人眼作為接收器來觀察放大的像。后來在顯微鏡中加入了攝影裝置,以感光膠片作為可以記錄和存儲的接收器。現(xiàn)代又普遍采用光電元件、電視攝象管和電荷耦合器等作為顯微鏡的接收器,配以微型電子計算機后構成完整的圖象信息采集和處理系統(tǒng)。
表面為曲面的玻璃或其他透明材料制成的光學透鏡可以使物體放大成像,就是利用這一原理把微小物體放大到人眼足以觀察的尺寸。近代的通常采用兩級放大,分別由物鏡和目鏡完成。被觀察物體位于物鏡的前方,被物鏡作*級放大后成一倒立的實象,然后此實像再被目鏡作第二級放大,成一虛象,人眼看到的就是虛像。而顯微鏡的總放大倍率就是物鏡放大倍率和目鏡放大倍率的乘積。放大倍率是指直線尺寸的放大比,而不是面積比。
的組成結構
一般由載物臺、聚光照明系統(tǒng)、物鏡,目鏡和調焦機構組成。載物臺用于承放被觀察的物體。利用調焦旋鈕可以驅動調焦機構,使載物臺作粗調和微調的升降運動,使被觀察物體調焦清晰成象。它的上層可以在水平面內(nèi)沿作精密移動和轉動,一般都把被觀察的部位調放到視場中
光學顯微鏡結構
心。
聚光照明系統(tǒng)由燈源和聚光鏡構成,聚光鏡的功能是使更多的光能集中到被觀察的部位。照明燈的光譜特性必須與顯微鏡的接收器的工作波段相適應。
物鏡位于被觀察物體附近,是實現(xiàn)*級放大的鏡頭。在物鏡轉換器上同時裝著幾個不同放大倍率的物鏡,轉動轉換器就可讓不同倍率的物鏡進入工作光路,物鏡的放大倍率通常為5~100倍。
物鏡是顯微鏡中對成象質量優(yōu)劣起決定性作用的光學元件。常用的有能對兩種顏色的光線校正色差的消色差物鏡;質量更高的還有能對三種色光校正色差的復消色差物鏡;能保證物鏡的整個像面為平面,以提高視場邊緣成像質量的平像場物鏡。高倍物鏡中多采用浸液物鏡,即在物鏡的下表面和標本片的上表面之間填充折射率為1.5左右的液體,它能顯著的提高顯微觀察的分辨率。
目鏡是位于人眼附近實現(xiàn)第二級放大的鏡頭,鏡放大倍率通常為5~20倍。按照所能看到的視場大小,目鏡可分為視場較小的普通目鏡,和視場較大的大視場目鏡(或稱廣角目鏡)兩類。
載物臺和物鏡兩者必須能沿物鏡光軸方向作相對運動以實現(xiàn)調焦,獲得清晰的圖像。用高倍物鏡工作時,容許的調焦范圍往往小于微米,所以顯微鏡必須具備極為精密的微動調焦機構。
顯微鏡放大倍率的極限即有效放大倍率,顯微鏡的分辨率是指能被顯微鏡清晰區(qū)分的兩個物點的Z小間距。分辨率和放大倍率是兩個不同的但又互有的概念。
當選用的物鏡數(shù)值孔徑不夠大,即分辨率不夠高時,顯微鏡不能分清物體的微細結構,此時即使過度地增大放大倍率,得到的也只能是一個輪廓雖大但細節(jié)不清的圖像,稱為無效放大倍率。反之如果分辨率已滿足要求而放大倍率不足,則顯微鏡雖已具備分辨的能力,但因圖像太小而仍然不能被人眼清晰視見。所以為了充分發(fā)揮顯微鏡的分辨能力,應使數(shù)值孔徑與顯微鏡總放大倍率合理匹配。
聚光照明系統(tǒng)是對顯微鏡成像性能有較大影響,但又是易于被使用者忽視的環(huán)節(jié)。它的功能是提供亮度足夠且均勻的物面照明。聚光鏡發(fā)來的光束應能保證充滿物鏡孔徑角,否則就不能充分利用物鏡所能達到的Z高分辨率。為此目的,在聚光鏡中設有類似照相物鏡中的 ,可以調節(jié)開孔大小的可變孔徑光闌,用來調節(jié)照明光束孔徑,以與物鏡孔徑角匹配。
改變照明方式,可以獲得亮背景上的暗物點(稱亮視場照明)或暗背景上的亮物點(稱暗視場照明)等不同的觀察方式,以便在不同情況下更好地發(fā)現(xiàn)和觀察微細結構。