【
儀表網 儀表研發】水系鈉離子電池兼具鈉資源儲量豐富和水系電解液本質安全的雙重優勢,被視為一種理想的大規模靜態儲能技術。此前,研究人員針對水系鈉離子電池體系做了一些探索。目前水系鈉離子電池主要受到水系電解液電壓窗口窄(小于2 V)的制約,進而限制了水系鈉離子電池的輸出電壓、能量密度和循環壽命等關鍵電化學性能指標提升,因此如何開發出寬電壓窗口水系電解液是實現高性能的水系鈉離子電池關鍵核心技術。
鈉離子電池(Sodium-ion battery),是一種二次電池(充電電池),主要依靠鈉離子在正極和負極之間移動來工作,與鋰離子電池工作原理相似。其工作原理是在充放電過程中,Na+在兩個電極之間往返嵌入和脫出:充電時,Na+從正極脫嵌,經過電解質嵌入負極;放電時則相反。新款18650鈉離子電池,借助了鈉離子轉移(而不是鋰離子)來存儲和釋放電能。
與鋰離子電池相比,鈉離子電池具有的優勢有:(1)鈉鹽原材料儲量豐富,價格低廉,采用鐵錳鎳基正極材料相比較鋰離子電池三元正極材料,原料成本降低一半;(2)由于鈉鹽特性,允許使用低濃度電解液(同樣濃度電解液,鈉鹽電導率高于鋰電解液20%左右)降低成本;(3)鈉離子不與鋁形成合金,負極可采用鋁箔作為集流體,可以進一步降低成本8%左右,降低重量10%左右;(4)由于鈉離子電池無過放電特性,允許鈉離子電池放電到零伏。鈉離子電池能量密度大于100Wh/kg,可與磷酸鐵鋰電池相媲美,但是其成本優勢明顯,有望在大規模儲能中取代傳統鉛酸電池。
近日,中國科學院物理研究所/北京凝聚態物理國家研究中心清潔能源重點實驗室E01組博士生蔣禮威在研究員胡勇勝、副研究員索鎏敏的指導下,通過將三氟甲基磺酸四乙基銨(TEAOTF)鹽和三氟甲基磺酸鈉(NaOTF)鹽共同溶于水中,設計了一種新型的含惰性陽離子的超高鹽濃度Water-in-Salt電解液(9 m NaOTF + 22 m TEAOTF)。該電解液不僅能實現較寬的電壓窗口(~3.3 V),而且還可以有效抑制電極材料在循環過程的溶解,而且由于TEA+陽離子半徑較大(計算值為3.6埃)而不會嵌入正負極材料,避免了混合陽離子電解液普遍存在的陽離子共嵌入問題。
此外,拉曼光譜和核磁共振譜表明該類新型超高鹽濃度電解液中TEA+和OTF-陰陽離子相互作用很弱,從而使得其即使是在31 m超高鹽濃度下也具有相對低的粘度和較高的電導率。
拉曼光譜(Raman spectra),是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的有力的工具之一,有時亦可進行定量分析。
分子動力學模擬進一步揭示了兩種溶液中陰陽離子配位不同:Na+離子與OTF-中的一個氧原子配位,而TEA+離子則與OTF-中的兩個氧原子配位。采用該電解液組裝的Na1.88Mn(Fe(CN)6)0.97·1.35H2O(NaMnHCF)//NaTiOPO4全電池無論在低倍率(0.25C)還是高倍率條件下(1C)均表現出優異的電化學性能(0.25C, 200周,90% 保持率;1C,800周,76% 保持率)。
所有評論僅代表網友意見,與本站立場無關。